Result: From Hamiltonian perturbation theory to symplectic integrators and back

Title:
From Hamiltonian perturbation theory to symplectic integrators and back
Authors:
Source:
NSF/CBMS Regional Conference on Numerical Analysis of Hamiltonian Differential EquationsApplied numerical mathematics. 29(1):73-87
Publisher Information:
Amsterdam: Elsevier, 1999.
Publication Year:
1999
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Approche heuristique, Heuristic approach, Enfoque heurístico, Approximation, Aproximación, Collision moléculaire, Molecule collision, Colisión molecular, Comportement asymptotique, Asymptotic behavior, Comportamiento asintótico, Estimation erreur, Error estimation, Estimación error, Intégration numérique, Numerical integration, Integración numérica, Modèle Landau, Landau model, Modelo Landau, Méthode Runge Kutta, Runge Kutta method, Método Runge Kutta, Système dynamique, Dynamical system, Sistema dinámico, Système hamiltonien, Hamiltonian system, Sistema hamiltoniano, Théorie perturbation, Perturbation theory, Teoría perturbación, Algorithme saut grenouille, Leapfrog algorithm, Arithmétique haute précision, High precision arithmetics, Intégrateur symplectique, Symplectic integrator, Méthode Euleur, Euler method
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Università di Padova, Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
ISSN:
0168-9274
Rights:
Copyright 1999 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.1792202
Database:
PASCAL Archive

Further Information

Hamiltonian perturbation theory explains how symplectic integrators work and, in particular, why they can be used to measure extremely small energy exchanges between different degrees of freedom in molecular collision problems. Conversely, numerical experiments based on symplectic integrators permit a detailed understanding of the dynamics of nearly integrable Hamiltonian systems, thus providing a valuable support to Hamiltonian perturbation theory.