Treffer: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We present the Interior Penalty discontinuous Galerkin method for the compressible Navier-Stokes equations. Shock-capturing is used to reduce over-shoots at discontinuities and sharp gradients. This stabilization introduces artificial viscosity at places of large local residuals, but preserves conservation and Galerkin orthogonality of the DG method. Based on this discretization we derive a posteriori error estimates for the error measured in terms of arbitrary target functionals, like, e.g. the drag and lift coefficients of an airfoil immersed in a viscous or inviscid fluid. The performance of the nonlinear solution process, the a posteriori error estimation and an adaptive mesh refinement specially tailored for the accurate computation of the force coefficients are demonstrated for supersonic laminar flows around the NACA0012 airfoil.