Treffer: On testing consecutive-ones property in parallel

Title:
On testing consecutive-ones property in parallel
Source:
Computational molecular biology DAM - CMB Series. Volume 2Discrete applied mathematics. 88(1-3):7-28
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 1998.
Publication Year:
1998
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Résolution de problèmes, jeux, Problem solving, game playing, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Generalites, General aspects, Mathématiques biologiques. Statistiques. Modèles. Métrologie. Informatique en biologie (généralités), Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects), Algorithme, Algorithm, Algoritmo, Biologie moléculaire, Molecular biology, Biología molecular, Biologie(informatique), Biology computing, Calcul parallèle, Parallel computation, Cálculo paralelo, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Décomposition graphe, Graph decomposition, Descomposición grafo, Graphe connexe, Connected graph, Grafo conexo, Méthode diviser pour régner, Divide and conquer method, Método dividir para vencer, Structure donnée arborescente, Tree data structures, Temps linéaire, Linear time, Tiempo lineal, Théorie graphe, Graph theory, Teoría grafo
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of ECECS, University of Cincinnati, Cincinnati, OH 45221-0030, United States
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974-0636, United States
ISSN:
0166-218X
Rights:
Copyright 1999 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Biological sciences. Generalities. Modelling. Methods

Computer science; theoretical automation; systems

Generalities in biological sciences
Accession Number:
edscal.1803074
Database:
PASCAL Archive

Weitere Informationen

The consecutive-ones property problem has many important applications in the field of discrete algorithms, including the physical mapping problem in computational molecular biology. A (0,1)-matrix is said to satisfy the consecutive-ones property if there is a permutation of the rows of the matrix such that in each column all non-zero entries are adjacent. The problem of determining such a permutation, if one exists, is the consecutive-ones property problem. The classic algorithm for solving this problem is a linear time sequential algorithm of Booth and Lueker (1976) which is known to be based on the PQ-tree data structure. In this paper we present a new algorithm for this problem using a divide-and-conquer method that employs a graph-theoretic data structure known as Tutte decomposition, i.e., decomposition of graphs into 3-connected components. Our algorithm enjoys the property that it efficiently parallelizes using the standard PRAM parallel computational model, while avoiding the complex implementations associated with PQ-trees. Our algorithm is more work efficient than previous parallel solutions, improving on the known processor bounds.