Treffer: Algorithms for clique-independent sets on subclasses of circular-arc graphs
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Maremática, NCE and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
A circular-arc graph is the intersection graph of arcs on a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum cardinality of a clique-independent set for a general graph. In the present paper, we propose polynomial time algorithms for finding the maximum cardinality and weight of a clique-independent set of a 3K2-free CA graph. Also, we apply the algorithms to the special case of an HCA graph. The complexity of the proposed algorithm for the cardinality problem in HCA graphs is O(n). This represents an improvement over the existing algorithm by Guruswami and Pandu Rangan, whose complexity is O(n2). These algorithms suppose that an HCA model of the graph is given.