Treffer: Some formulations for the group steiner tree problem

Title:
Some formulations for the group steiner tree problem
Source:
Traces of the Latin American conference on combinatorics, graphs and applications: a selection of papers from LACGA 2004Discrete applied mathematics. 154(13):1877-1884
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science. Institute of Mathematics and Statistics, University of São Paulo, Brazil
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18032633
Database:
PASCAL Archive

Weitere Informationen

The group Steiner tree problem consists of, given a graph G, a collection 91 of subsets of V(G) and a cost c(e) for each edge of G, finding a minimum-cost subtree that connects at least one vertex from each R e R. It is a generalization of the well-known Steiner tree problem that arises naturally in the design of VLSI chips. In this paper, we study a polyhedron associated with this problem and some extended formulations. We give facet defining inequalities and explore the relationship between the group Steiner tree problem and other combinatorial optimization problems.