Treffer: Some formulations for the group steiner tree problem
Title:
Some formulations for the group steiner tree problem
Source:
Traces of the Latin American conference on combinatorics, graphs and applications: a selection of papers from LACGA 2004Discrete applied mathematics. 154(13):1877-1884
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Informatique théorique, Computer theory, Informática teórica, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Problème arbre Steiner, Steiner tree problem, Problema arbol Steiner, Programmation en nombres entiers, Integer programming, Programación entera, VLSI, Algorithme de séparation et coupes, Branch-and-cut algorithm, Combinatoire polyèdre, Polyhedral combinatorics, Branch-and-cut algorithms, Integer programming formulations
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science. Institute of Mathematics and Statistics, University of São Paulo, Brazil
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.18032633
Database:
PASCAL Archive
Weitere Informationen
The group Steiner tree problem consists of, given a graph G, a collection 91 of subsets of V(G) and a cost c(e) for each edge of G, finding a minimum-cost subtree that connects at least one vertex from each R e R. It is a generalization of the well-known Steiner tree problem that arises naturally in the design of VLSI chips. In this paper, we study a polyhedron associated with this problem and some extended formulations. We give facet defining inequalities and explore the relationship between the group Steiner tree problem and other combinatorial optimization problems.