Result: Mathematical optimization of in vivo NMR chemistry through the fast Padé transform : potential relevance for early breast cancer detection by magnetic resonance spectroscopy

Title:
Mathematical optimization of in vivo NMR chemistry through the fast Padé transform : potential relevance for early breast cancer detection by magnetic resonance spectroscopy
Source:
Special issue on the international conference of computational methods in sciences and engineering (ICCMSE 2005). Dedicated to Prof. Erkki J. BrändasJournal of mathematical chemistry. 40(1):85-103
Publisher Information:
Heidelberg: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 50 ref
Original Material:
INIST-CNRS
Subject Terms:
Chemistry, Chimie, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Analyse de fourier, Fourier analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Informatique, statistique et modelisations biomedicales, Computerized, statistical medical data processing and models in biomedicine, Aide à la décision médicale. Aide au diagnostic, Medical management aid. Diagnosis aid, Algorithme rapide, Fast algorithm, Algoritmo rápido, Analyse Fourier, Fourier analysis, Análisis Fourier, Analyse donnée, Data analysis, Análisis datos, Analyse numérique, Numerical analysis, Análisis numérico, Approximant Padé, Padé approximant, Aproximante Pade, Approximation non linéaire, Non linear approximation, Aproximación no lineal, Calcul erreur, Error analysis, Cálculo error, Détection, Detection, Detección, In vivo, Méthode optimisation, Optimization method, Método optimización, Polynôme, Polynomial, Polinomio, Potentiel, Potential, Potencial, Rapport signal bruit, Signal to noise ratio, Relación señal ruido, Résonance, Resonance, Resonancia, Sein pathologie, Breast disease, Seno patología, Traitement signal, Signal processing, Procesamiento señal, Analyse erreur, Cancer sein, Breast cancer, Chimie RMN, NMR chemistry, Diagnostic cancer, Cancer diagnostic, SNR, breast cancer, early cancer diagnostics, fast Padé transform
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Oncology and Pathology, Karolinska Institute, Building P-9, P.O. Box 260, Stockholm 171776, Sweden
Institute for Prevention Research, The University of Southern California School of Medicine, Los Angeles, CA, United States
ISSN:
0259-9791
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Public health. Hygiene-occupational medicine. Information processing
Accession Number:
edscal.18052457
Database:
PASCAL Archive

Further Information

Mathematical advances in signal processing through the fast Padé transform (FPT) can greatly improve the information extracted via in vivo nuclear magnetic resonance (NMR) chemistry. The FPT is a frequency-dependent, non-linear rational polynomial approximation of the exact Maclaurin series, which dramatically improves resolution and signal-to-noise ratio in a stable manner with robust error analysis and provides precise numerical data for all the peak parameters (position, height, width and phase) for every true resonance including those that are weak and/or overlapping. The concentrations of many of the chemical constituents of tissues can thereby be accurately determined. These advantages of the FPT are particularly germane for in vivo NMR detection and quantification of a number of molecular markers of breast cancer, such as phosphocholine, as well as lactate, which cannot be assessed using standard Fourier data analytical techniques applied to in vivo NMR in the clinical setting.