Treffer: An online sequential algorithm for the estimation of transition probabilities for jump Markov linear systems
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper describes a new method to estimate the transition probabilities associated with a jump Markov linear system. The new algorithm uses stochastic approximation type recursions to minimize the Kullback-Leibler divergence between the likelihood function of the transition probabilities and the true likelihood function. Since the calculation of the likelihood function of the transition probabilities is impossible, an incomplete data paradigm, which has been previously applied to a similar problem for hidden Markov models, is used. The algorithm differs from the existing algorithms in that it assumes that the transition probabilities are deterministic quantities whereas the existing approaches consider them to be random variables with prior distributions.