Result: Subthreshold-seeking local search

Title:
Subthreshold-seeking local search
Source:
Foundations of genetic algorithmsTheoretical computer science. 361(1):2-17
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 8 ref
Original Material:
INIST-CNRS
Subject Terms:
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computer Science, Colorado State University, Fort Collins, CO 80523, United States
Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18075428
Database:
PASCAL Archive

Further Information

Algorithms for parameter optimization display subthreshold-seeking behavior when the majority of the points that the algorithm samples have an evaluation less than some target threshold. We first analyze a simple subthreshold-seeker algorithm. Further theoretical analysis details conditions that allow subthreshold-seeking behavior for local search algorithms using Binary and Gray code representations. The analysis also shows that subthreshold-seeking behavior can be increased by using higher bit precision. However, higher precision also can reduce exploration. A simple modification to a bit-climber is proposed that improves its subthreshold-seeking behavior. Experiments show that this modification results in both improved search efficiency and effectiveness on common benchmark problems.