Treffer: Compact representations as a search strategy : Compression EDAs

Title:
Compact representations as a search strategy : Compression EDAs
Authors:
Source:
Foundations of genetic algorithmsTheoretical computer science. 361(1):57-71
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Generalites, General aspects, Mathématiques biologiques. Statistiques. Modèles. Métrologie. Informatique en biologie (généralités), Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects), Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Compression, Compresión, Informatique théorique, Computer theory, Informática teórica, Stratégie recherche, Search strategy, Estrategia investigación, Algorithme estimation distribution, Estimation-of-Distribution Algorithm, Application génotype phénotype, Genotype phenotype mapping, Longueur description minimale, Minimal description length, Représentation factorielle, Factorial representation, Estimation-of-Distribution Algorithms, Evolutionary Algorithms, Factorial representations, Genotype-phenotype mapping
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute for Adaptive and Neural Computation, University of Edinburgh, 5 Forrest Hill, Edinburgh EHI 2QL Scotland, United Kingdom
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Biological sciences. Generalities. Modelling. Methods

Computer science; theoretical automation; systems

Generalities in biological sciences

Operational research. Management
Accession Number:
edscal.18075431
Database:
PASCAL Archive

Weitere Informationen

The choice of representation crucially determines the capability of search processes to find complex solutions in which many variables interact. The question is how good representations can be found and how they can be adapted online to account for what can be learned about the structure of the problem from previous samples. We address these questions in a scenario that we term indirect Estimation-of-Distribution: We consider a decorrelated search distribution (mutational variability) on a variable length genotype space. A one-to-one encoding onto the phenotype space then needs to induce an adapted phenotypic search distribution incorporating the dependencies between phenotypic variables that have been observed successful previously. Formalizing this in the framework of Estimation-of-Distribution Algorithms, an adapted phenotypic search distribution can be characterized as minimizing the Kullback-Leibler divergence (KLD) to a population of previously selected samples (parents). The paper derives a relation between this KLD and the description length of the encoding, stating that compact representations provide a way to minimize the divergence. A proposed class of Compression Evolutionary Algorithms and experiments with an grammar-based compression scheme illustrate the new concept.