Treffer: Some results about the Markov chains associated to GPs and general EAs

Title:
Some results about the Markov chains associated to GPs and general EAs
Source:
Foundations of genetic algorithmsTheoretical computer science. 361(1):72-110
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus de markov, Markov processes, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Programmation mathématique, Mathematical programming, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Chaîne Markov, Markov chain, Cadena Markov, Essai croisé, Crossover study, Ensayo cruzado, Fréquence apparition, Occurrence frequency, Frecuencia aparición, Informatique théorique, Computer theory, Informática teórica, Mutation, Mutación, Programmation non linéaire, Non linear programming, Programación no lineal, Algorithme linéaire, Algorithme sélection, Loi stationnaire, Stationary distribution, Sélection fitness proportionnel, Fitness-proportional selection, Théorème Geiringer, Geiringer theorem, Crossover, Evolutionary algorithms
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15, 2TT, United Kingdom
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.18075432
Database:
PASCAL Archive

Weitere Informationen

Geiringer's theorem is a statement which tells us something about the limiting frequency of occurrence of a certain individual when a classical genetic algorithm is executed in the absence of selection and mutation. Recently Poli, Stephens, Wright and Rowe extended the original theorem of Geiringer to include the case of variable-length genetic algorithms and linear genetic programming. In the current paper a rather powerful finite population version of Geiringer's theorem which has been established recently by Mitavskiy is used to derive a schema-based version of the theorem for nonlinear genetic programming with homologous crossover. The theorem also applies in the presence of node mutation. The corresponding formula in case when node mutation is present has been established. The limitation of the finite population Geiringer result is that it applies only in the absence of selection. In the current paper we also observe some general inequalities concerning the stationary distribution of the Markov chain associated to an evolutionary algorithm in which selection is the last (output) stage of a cycle. Moreover we prove an anti-communism theorem which applies to a wide class of EAs and says that for small enough mutation rate, the stationary distribution of the Markov chain modelling the EA cannot be uniform.