Result: Pseudo-distributive laws and axiomatics for variable binding
School of Informatics, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, Scotland, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
We give a general category theoretic formulation of the substitution structure underlying the category theoretic study of variable binding proposed by Fiore, Plotkin, and Turi. This general formulation provides the foundation for their work on variable binding, as well as Tanaka's linear variable binding and variable binding for other binders and for mixtures of binders as for instance in the Logic of Bunched Implications. The key structure developed by Fiore et al. was a substitution monoidal structure, from which their formulation of binding was derived; so we give an abstract formulation of a substitution monoidal structure, then, at that level of generality, derive the various category theoretic structures they considered. The central construction we use is that of a pseudo-distributive law between 2-monads on Cat, which suffices to induce a pseudo-monad on Cat, and hence a substitution monoidal structure on the free object on 1. We routinely generalise that construction to account for types.