Treffer: Monte Carlo tests with nuisance parameters : A general approach to finite-sample inference and nonstandard asymptotics
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
The technique of Monte Carlo (MC) tests [Dwass (1957, Annals of Mathematical Statistics 28, 181-187); Barnard (1963, Journal of the Royal Statistical Society, Series B 25, 294)] provides a simple method for building exact tests from statistics whose finite sample distribution is intractable but can be simulated (when no nuisance parameter is involved). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing it to statistics whose null distribution involves nuisance parameters [maximized MC (MMC) tests]. Simplified asymptotically justified versions of the MMC method are also proposed: these provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics.