Treffer: MMC techniques for limited dependent variables models : Implementation by the branch-and-bound algorithm
CORE, Université Catholique de Louvain, Belgium
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Weitere Informationen
We propose a finite sample approach to some of the most common limited dependent variables models. The method rests on the maximized Monte Carlo (MMC) test technique proposed by Dufour [1998. Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard asymptotics. Journal of Econometrics, this issue]. We provide a general way for implementing tests and confidence regions. We show that the decision rule associated with a MMC test may be written as a Mixed Integer Programming problem. The branch-and-bound algorithm yields a global maximum in finite time. An appropriate choice of the statistic yields a consistent test, while fulfilling the level constraint for any sample size. The technique is illustrated with numerical data for the logit model.