Treffer: A special vegetation index for the weed detection in sensor based precision agriculture

Title:
A special vegetation index for the weed detection in sensor based precision agriculture
Source:
Environmental monitoring and assessment. 117(1-3):505-518
Publisher Information:
Dordrect: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 1 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Ecology, Ecologie, Environment, Environnement, Geology, Géologie, Pollution, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Phytopathologie. Zoologie agricole. Protection des cultures et des forets, Phytopathology. Animal pests. Plant and forest protection, Plantes parasites. Mauvaises herbes, Parasitic plants. Weeds, Malherbologie, Weeds, Généralités, botanique, écologie, dégâts, importance économique, Generalities, botany, ecology, damages, economic importance, Capteur mesure, Measurement sensor, Captador medida, Malherbologie, Weed science, Ciencia malas hierbas, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Surveillance écologique, Environmental monitoring, Vigilancia ecológica, Agriculture précision, Precision agriculture, Agricultura precisión, Analyse image, Image analysis, Análisis imagen, Analyse signal, Signal analysis, Análisis de señal, Capteur optique, Optical sensor, Captador óptico, Caractéristique spectrale, Spectral data, Característica espectral, Critère décision, Decision criterion, Criterio decisión, Détection, Detection, Detección, Facteur réflexion, Reflectance, Coeficiente reflexión, Fonction mathématique, Mathematical function, Función matemática, Indice végétation, Vegetation index, Indice de vegetación, Lumière rouge, Red light, Luz roja, Mauvaise herbe, Weed, Malezas, Paillage, Mulching, Cobertura vegetal, Seuil, Threshold, Umbral, Sol agricole, Agricultural soil, Suelo agrícola, Traitement image, Image processing, Procesamiento imagen, Traitement informatique, Computerized processing, Tratamiento informático, decision criterion, image processing, mulched cropland, red threshold, signum function, spectral sensing, vegetation index, weed detection
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Agricultural Engineering Bornim (ATB), Dept. Eng. for Crop Production, Max-Eyth-Allee 100, 14469 Potsdam, Germany
ISSN:
0167-6369
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Phytopathology. Agricultural zoology. Crops and forests protection
Accession Number:
edscal.18103703
Database:
PASCAL Archive

Weitere Informationen

Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).