Treffer: International space station leak localization using attitude response datas

Title:
International space station leak localization using attitude response datas
Source:
Journal of guidance, control, and dynamics. 29(5):1041-1050
Publisher Information:
Reston, VA: American Institute of Aeronautics and Astronautics, 2006.
Publication Year:
2006
Physical Description:
print, 27 ref
Original Material:
CRAN
INIST-CNRS
Subject Terms:
Aeronautics astronautics, Aéronautique, astronautique, Control theory, operational research, Automatique, recherche opérationnelle, Mechanics acoustics, Mécanique et acoustique, Transportation, Transports, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Modélisation et identification, Modelling and identification, Divers, Miscellaneous, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Techniques d'observation à distance, Remote observing techniques, Attitude, Actitud, Aérodynamique, Aerodynamics, Aerodinámica, Bras, Arm, Brazo, Buse, Nozzle, Tubo, Capteur mesure, Measurement sensor, Captador medida, Filtre Kalman étendu, Extended Kalman filter, Filtro Kalman extendido, Filtre Kalman, Kalman filter, Filtro Kalman, Filtre, Filter, Filtro, Fuite air, Air leak, Escape aire, Fuite, Leak, Salida, Induction, Inducción, Localisation, Localization, Localización, Modèle dynamique, Dynamic model, Modelo dinámico, Modélisation, Modeling, Modelización, Poussée, Thrust, Empujón, Réponse, Response, Respuesta, Spationef, Spacecraft, Vehículo espacial, Station spatiale, Space station, Estación espacial, Temps réel, Real time, Tiempo real, Traînée, Drag, Resistencia avance
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Texas A&M University, College Station, Texas 77843-3141, United States
University at Buffalo, The State University of New York, Amherst, New York 14260-4400, United States
Exponent, Failure Analysis Associates, Los Angeles, California 90066, United States
ISSN:
0731-5090
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Computer science; theoretical automation; systems
Accession Number:
edscal.18120609
Database:
PASCAL Archive

Weitere Informationen

This paper presents a new method to localize air leaks on the international space station based on the spacecraft attitude and rate behavior produced by a mass expulsion force of the leaking air. Thrust arising from the leak generates a disturbance torque, which is estimated using a real-time unscented filter with a dynamical model, including external disturbances such as aerodynamic drag and gravity gradient. The leak location can be found by estimating the moment arm of the estimated disturbance torque, assuming that the leak is caused by only one hole. Knowledge of the vent.thrust magnitude and its resulting disturbance torque is needed to estimate the moment arm. The vent thrust direction is assumed to be perpendicular to the structure surface, and its magnitude is determined using an extended Kalman filter with a nozzle dynamics model. There may be multiple leak locations for a given response, but the actual geometric structure of the space station eliminates many of the possible solutions. Numerical results show that the leak localization method is very efficient when used with the conventional sequential hatch closure or airflow induction sensor system.