Treffer: Efficient wavelet-based predictive Slepian-Wolf coding for hyperspectral imagery : Distributed source coding

Title:
Efficient wavelet-based predictive Slepian-Wolf coding for hyperspectral imagery : Distributed source coding
Source:
Signal processing. 86(11):3180-3195
Publisher Information:
Amsterdam: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Représentation du signal. Analyse spectrale, Signal representation. Spectral analysis, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Codage, codes, Coding, codes, Traitement du signal, Signal processing, Traitement des images, Image processing, Algorithme, Algorithm, Algoritmo, Analyse signal, Signal analysis, Análisis de señal, Analyse spectre, Spectrum analysis, Análisis espectro, Bande fréquence, Frequency band, Banda frecuencia, Bande spectrale, Spectral band, Banda espectral, Boucle ouverte, Open loop, Bucle abierto, Capteur imagerie hyperspectral, Hyperspectral imaging sensor, Sensor hiperespectral de formación de imágenes, Codage image, Image coding, Codage prédictif, Predictive coding, Codificación predictiva, Codage source, Source coding, Code contrôle parité, Parity check codes, Code correcteur erreur, Error correcting code, Código corrector error, Contrôle parité, Parity check, Control paridad, Estimation linéaire, Linear estimation, Estimación lineal, Implémentation, Implementation, Implementación, Méthode partition, Partition method, Método partición, Méthode raffinement, Refinement method, Método afinamiento, Ondelette, Wavelets, Prédiction linéaire, Linear prediction, Predicción lineal, Source information, Information source, Fuente información, Structure hiérarchisée, Hierarchized structure, Estructura jerarquizada, Traitement image, Image processing, Procesamiento imagen, Traitement signal, Signal processing, Procesamiento señal, Transformation ondelette, Wavelet transformation, Transformación ondita, Problème Wyner Ziv, Wyner Ziv problem, Signal source réparti, Distributed source signal, Señal fuente distribuida, Correlation estimation, Distributed source coding, Hyperspectral imagery, LDPC, SPIHT, Slepian-Wolf coding
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering-Systems Division, University of Southern California, Los Angeles, CA 90089-2560, United States
Department of Computer Science, University of Southern California, Los Angeles, CA 90089-0781, United States
ISSN:
0165-1684
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.18122327
Database:
PASCAL Archive

Weitere Informationen

Hyperspectral imagery is usually highly correlated, in some cases within each spectral band, but in particular across neighboring frequency bands. In this paper, we propose to use distributed source coding (DSC) to exploit this correlation with an eye to a more efficient hardware implementation. The theoretical underpinnings of DSC are laid out in the pioneering work of Slepian and Wolf, and Wyner and Ziv, which provide bounds on the achievable compression when encoding correlated sources with side information available at the decoder. We apply DSC principles to hyperspectral images by encoding individual images (each image representing a spectral band) under the assumption that these bands are correlated. Using DSC tools allows us to operate in open loop at the encoder, so that encoding a band does not require having access to decoded versions of (spectrally) neighboring bands. We first compute the parameters of a linear predictor to estimate the current spectral band from a neighboring one, and estimate the correlation between these two bands (after prediction). Then a wavelet transform is applied and a bit-plane representation is used for the resulting wavelet coefficients. We observe that in typical hyperspectral images, bit-planes of same frequency and significance located in neighboring spectral bands are correlated. We exploit this correlation by using low-density parity-check (LDPC)-based Slepian-Wolf codes. The code rates are chosen based on the estimated correlation. We demonstrate that set partitioning of wavelet coefficients, such as that introduced in the popular SPIHT algorithm, can be combined with our proposed DSC techniques so that coefficient significance information is sent independently for all spectral bands, while sign and refinement bits can be coded using DSC. Our proposed scheme is appealing for hardware implementation as it is easy to parallelize and has modest memory requirements. In addition to these implementation advantages, our scheme can achieve competitive coding performance. Our results for high-correlation spectral bands from the NASA AVIRIS dataset show, at medium to high reconstructed qualities, gains of up to 5dB as compared to encoding the spectral bands independently using SPIHT. Our proposed techniques are also competitive compared to 3D wavelet coding methods, where filtering is applied spatially within each spectral band, as well as across spectral bands.