Treffer: Numerical investigations on nondestructive and contactless method for measuring critical current density by permanent magnet method

Title:
Numerical investigations on nondestructive and contactless method for measuring critical current density by permanent magnet method
Source:
Advances in superconductivity XVIII, Tsukuba, 24-26, 2005Physica. C. Superconductivity. 445-48:417-421
Publisher Information:
Amsterdam: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Electronics, Electronique, Electrical engineering, Electrotechnique, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Etat condense: structure electronique, proprietes electriques, magnetiques et optiques, Condensed matter: electronic structure, electrical, magnetic, and optical properties, Supraconductivité, Superconductivity, Propriétés des supraconducteurs de type i et de type ii, Properties of type I and type II superconductors, Courants critiques, Critical currents, Cuprates supraconducteurs (supraconducteurs à haute tc et composés mères isolants), Cuprates superconductors (high tc and insulating parent compounds), Propriétés et matériaux magnétiques, Magnetic properties and materials, Etudes de matériaux magnétiques particuliers, Studies of specific magnetic materials, Aimants permanents, Permanent magnets, Aimant permanent, Permanent magnets, Courant critique, Critical current, Densité courant critique, Critical current density, Densidad corriente crítica, Equation différentielle, Differential equations, Equation intégrale, Integral equations, Force électromagnétique, Electromagnetic forces, Mesure sans contact, Non contact measurement, Medida sin contacto, Méthode mesure, Measuring methods, Méthode vectorielle, Vector method, Método vectorial, Potentiel vecteur, Vector potential, Potencial vector, Problème valeur limite, Boundary-value problems, Simulation numérique, Digital simulation, Simulation ordinateur, Computerized simulation, Supraconducteur haute température, High-Tc superconductors, 7425S, 7550W, 07.05.T, 74.60.J, 74.72.B, Computer-modeling and simulation, Critical currents, Yttrium-based high-Tc superconductors
Time:
7472
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Faculty of Engineering, Yamagata University, 4- 3- 16, Johnan, Yonezawa, Yamagata 992-8510, Japan
Yamagata Promotional Organization for Industrial Technology, 2-2-1, Matsuei, Yamagata, Yamagata 990-2473, Japan
School of Computer Science, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan
ISSN:
0921-4534
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of condensed state: electronic structure, electrical, magnetic and optical properties
Accession Number:
edscal.18172974
Database:
PASCAL Archive

Weitere Informationen

The nondestructive and contactless method for measuring the critical current density jC has been investigated by means of the numerical simulation. In the method, a permanent magnet is brought closer to a high-temperature superconducting film and the electromagnetic force is measured simultaneously. According to the experiment, the maximum repulsive force is proportional to jC. For the purpose of reproducing the experimental result numerically, the behavior of the shielding current density is formulated by use of the current-vector-potential method. The numerical code has been developed for solving an initial-boundary-value problem of the resulting integral-differential equation and, by means of the code, the relation between the maximum repulsive force and the critical current density is determined. The results of computations show that there is direct proportionality between them. This tendency validates the nondestructive and contactless measurement method of jC.