Treffer: Résolution d'un problème combinatoire fractionnaire par la programmation linéaire mixte / Resolution of fractionnal combinatorial problem using mixed integer linear programming

Title:
Résolution d'un problème combinatoire fractionnaire par la programmation linéaire mixte / Resolution of fractionnal combinatorial problem using mixed integer linear programming
Source:
ROADEF 03RAIRO. Recherche opérationnelle. 40(2):97-111
Publisher Information:
Paris: EDP Sciences, 2006.
Publication Year:
2006
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
French
Author Affiliations:
CEDRIC-IIE, 18 allée Jean Rostand, 91025 Evry, France
ISSN:
0399-0559
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Operational research. Management
Accession Number:
edscal.18173140
Database:
PASCAL Archive

Weitere Informationen

Fractionnal mathematical programs appear in numerous operations research, computer science and economic domains. We consider in this paper the problem of maximizing the sum of 0-1 hyperbolic ratios (SRH). In contrast to the single ratio problem, there has been little work in the literature concerning this problem. We propose two mixed-integer linear programming formulations of SRH and develop two different strategies to solve them. The first one consists in using directly a general-purpose mixed-integer programming solver. The second one is based on a specialized branch and bound algorithm that reformulates more precisely the problem at every node of search tree. We also propose a heuristic method and we exploit the obtained solution in order to improve the first strategy. We present computational experiments that allow to compare the different approaches.