Result: Static analysis of atomicity for programs with non-blocking synchronization
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
In concurrent programming, non-blocking synchronization is very efficient but difficult to design correctly. This paper presents a static analysis to show that code blocks are atomic, i.e., that every execution of the program is equivalent to one in which those code blocks execute without interruption by other threads. Our analysis determines commutativity of operations based primarily on how synchronization primitives (including locks, load-linked, store-conditional, and compare-and-swap) are used. A reduction theorem states that certain patterns of commutativity imply atomicity. Atomicity is itself an important correctness requirement for many concurrent programs. Furthermore, an atomic code block can be treated as a single transition during subsequent analysis of the program; this can greatly improve the efficiency of the subsequent analysis. We demonstrate the effectiveness of our approach on several concurrent non-blocking programs.