Result: Well quasi-orders, unavoidable sets, and derivation systems

Title:
Well quasi-orders, unavoidable sets, and derivation systems
Source:
Informatique théorique et applications (Imprimé). 40(3):407-426
Publisher Information:
Paris: EDP Sciences, 2006.
Publication Year:
2006
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Matematica, Università di Roma La Sapienza Piazzale Aldo Moro 2, 00185 Roma, Italy
Dipartimento di Matematica, Università di Roma Tor Vergata, via della Ricerca Scientifica, 00133 Roma, Italy
ISSN:
0988-3754
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18194037
Database:
PASCAL Archive

Further Information

Let I be a finite set of words and ⇒*Ibe the derivation relation generated by the set of productions {e → u |u ∈ I}. Let L∈I be the set of words u such that e ⇒*I u. We prove that the set I is unavoidable if and only if the relation ⇒*I is a well quasi-order on the set L∈I. This result generalizes a theorem of [Ehrenfeucht et al., Theor. Comput. Sci. 27(1983) 311-332]. Further generalizations are investigated.