Treffer: A lemma on polynomials modulo pm and applications to coding theory

Title:
A lemma on polynomials modulo pm and applications to coding theory
Source:
International workshop on combinatorics, linear algebra, and graph coloringDiscrete mathematics. 306(23):3154-3165
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, United States
ISSN:
0012-365X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18288818
Database:
PASCAL Archive

Weitere Informationen

An integer-valued function f(x) on the integers that is periodic of period pe, p prime, can be matched, modulo pm, by a polynomial function w(x); we show that w(x) may be taken to have degree at most (m(p - 1) + 1 ) pe-1 - 1. Applications include a short proof of the theorem of McEliece on the divisibility of weights of codewords in p-ary cyclic codes by powers of p, an elementary proof of the Ax-Katz theorem on solutions of congruences modulo p, and results on the numbers of codewords in p-ary linear codes with weights in a given congruence class modulo pe.