Treffer: Equi-energy sampler with applications in statistical inference and statistical mechanics. Discussion

Title:
Equi-energy sampler with applications in statistical inference and statistical mechanics. Discussion
Source:
Annals of statistics. 34(4):1581-1652
Publisher Information:
Hayward, CA: Institute of Mathematical Statistics, 2006.
Publication Year:
2006
Physical Description:
print, dissem
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus particuliers (théorie du renouvellement, processus de renouvellement markoviens, processus semi-markoviens, modèles de la mécanique statistique, applications diverses), Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications), Statistiques, Statistics, Théorie de l'échantillonnage, sondages statistiques, Sampling theory, sample surveys, Applications, Sciences médicales, Medical sciences, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Biophysique, Biophysics, Biofísica, Calcul 3 dimensions, Three-dimensional calculations, Complexité calcul, Computational complexity, Complejidad computación, Convergence, Convergencia, Efficacité estimateur, Estimator efficiency, Eficacia estimador, Estimation densité, Density estimation, Estimación densidad, Estimation statistique, Statistical estimation, Estimación estadística, Fonction énergie, Energy function, Función energía, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Mécanique statistique, Statistical mechanics, Mecánica estadística, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Régression statistique, Statistical regression, Regresión estadística, Théorie prédiction, Prediction theory, Algorithme échantillonnage, Sampling algorithm, Inférence statistique, Statistical inference, Représentation protéine, Protein representation
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
University of California, Los Angeles, United States
University of Connecticut, United States
Stanford University, United States
Harvard University, United States
University of Ottawa, Canada
ISSN:
0090-5364
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18312169
Database:
PASCAL Archive

Weitere Informationen

We introduce a new sampling algorithm, the equi-energy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperature-domain methods, the equi-energy sampler, utilizing the temperature-energy duality, targets the energy directly. The focus on the energy function not only facilitates efficient sampling, but also provides a powerful means for statistical estimation, for example, the calculation of the density of states and microcanonical averages in statistical mechanics. The equi-energy sampler is applied to a variety of problems, including exponential regression in statistics, motif sampling in computational biology and protein folding in biophysics. We congratulate Samuel Kou, Qing Zhou and Wing Wong (referred to subsequently as KZW) for this beautifully written paper, which opens a new direction in Monte Carlo computation. This discussion has two parts. First, we describe a very closely related method, multicanonical sampling (MCS), and report a simulation example that compares the equi-energy (EE) sampler with MCS. Overall, we found the two algorithms to be of comparable efficiency for the simulation problem considered. In the second part, we develop some additional convergence results for the EE sampler. Novel sampling algorithms can significantly impact open questions in computational biology, most notably the in silico protein folding problem. By using computational methods, protein folding aims to find the three-dimensional structure of a protein chain given the sequence of its amino acid building blocks. The complexity of the problem strongly depends on the protein representation and its energy function. The more detailed the model, the more complex its corresponding energy function and the more challenge it sets for sampling algorithms. Kou, Zhou and Wong have introduced a novel sampling method, which could contribute significantly to the field of structural prediction.