Result: PARAMAP vs. Isomap : A comparison of two nonlinear mapping algorithms
Rutgers Business School, Newark and New Brunswick, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Operational research. Management
Further Information
Dimensionality reduction techniques are used for representing higher dimensional data by a more parsimonious and meaningful lower dimensional structure. In this paper we will study two such approaches, namely Carroll's Parametric Mapping (abbreviated PARAMAP) (Shepard and Carroll, 1966) and Tenenbaum's Isometric Mapping (abbreviated Isomap) (Tenenbaum, de Silva, and Langford, 2000). The former relies on iterative minimization of a cost function while the latter applies classical MDS after a preprocessing step involving the use of a shortest path algorithm to define approximate geodesic distances. We will develop a measure of congruence based on preservation of local structure between the input data and the mapped low dimensional embedding, and compare the different approaches on various sets of data, including points located on the surface of a sphere, some data called the Swiss Roll data, and truncated spheres.