Result: The category-theoretic solution of recursive program schemes
Department of Mathematics, Indiana University, Bloomington, IN, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the category-theoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with enough final coalgebras we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study substitution in infinite trees, including second-order substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes. For example, the classical Cantor two-thirds set falls out as an interpreted solution (in our sense) of a recursive program scheme.