Treffer: Synthetic aperture radar image segmentation using edge entropy constrained stochastic relaxation

Title:
Synthetic aperture radar image segmentation using edge entropy constrained stochastic relaxation
Source:
Intelligent computing in signal processing and pattern recognition (International Conference on Intelligent Computing, ICIC 2006, Kunming, China, August 16-19, 2006)0ICIC 2006. :528-537
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 10 ref 1
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Signal Processing Laboratory, School of electronics information, Wuhan University, Wuhan 430079, China
ISSN:
0170-8643
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18315870
Database:
PASCAL Archive

Weitere Informationen

A synthetic aperture radar (SAR) image segmentation method using the multi-level logistic (MLL) model and edge entropy constrained stochastic relaxation is proposed. Edge entropy is developed and combined with a stochastic relaxation process to get expected segmentation. Gamma distribution is used for SAR intensity data and MLL model for the underlying label image. Parameters of Gamma distribution are estimated using EM method. The proposed method is an iterative scheme consists of two alternating steps: to approximate the estimation of the pixel class labels and to estimate gamma distribution parameters. The weight of the prior part in goal energy function is increased slowly versus the increasing iteration times until the edge entropy value of segmentation reaches an experiential threshold. The segmentation results for synthetic and real SAR images show that the proposed method has a good performance.