Treffer: Domination analysis for minimum multiprocessor scheduling
Title:
Domination analysis for minimum multiprocessor scheduling
Authors:
Source:
Discrete applied mathematics. 154(18):2613-2619
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Problèmes combinatoires classiques, Classical combinatorial problems, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Performances des systèmes informatiques. Fiabilité, Computer systems performance. Reliability, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Informatique théorique, Computer theory, Informática teórica, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Partition, Partición, Algorithme temps polynomial, Analyse domination, Domination analysis, Ordonnancement multiprocesseur minimum, Minimum multiprocessor scheduling
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, United Kingdom
Department of Computer Science, University of Haifa, Israel
Institut für Mathematik, Alpen -Adria -Universität Klagenfurt, Universitätsstr. 65-67, 9020 Klagenfurt, Austria
Department of Computer Science, University of Haifa, Israel
Institut für Mathematik, Alpen -Adria -Universität Klagenfurt, Universitätsstr. 65-67, 9020 Klagenfurt, Austria
ISSN:
0166-218X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Operational research. Management
Mathematics
Operational research. Management
Accession Number:
edscal.18319853
Database:
PASCAL Archive
Weitere Informationen
Let P be a combinatorial optimization problem, and let A be an approximation algorithm for P. The domination ratio domr(A, s) is the maximal real q such that the solution x(I) obtained by A for any instance I of P of size s is not worse than at least the fraction q of the feasible solutions of I. We say that P admits an asymptotic domination ratio one (ADRO) algorithm if there is a polynomial time approximation algorithm A for P such that lims→∞ domr(A, s) = 1. Alon, Gutin and Krivelevich (Algorithms with large domination ratio, J. Algorithms 50 (2004) 118-131] proved that the partition problem admits an ADRO algorithm. We extend their result to the minimum multiprocessor scheduling problem.