Result: Uncertainty in thermal basin modeling : An interval finite element approach

Title:
Uncertainty in thermal basin modeling : An interval finite element approach
Source:
Reliable Engineering ComputingReliable computing. 12(6):451-470
Publisher Information:
Heidelberg: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Arithmétique intervalle, Interval arithmetic, Aritmética intervalo, Conduction thermique, Thermal conduction, Conducción térmica, Discrétisation, Discretization, Discretización, Equation chaleur, Heat equation, Ecuación calor, Equation différentielle, Differential equation, Ecuación diferencial, Géostatistique, Geostatistics, Geoestadística, Matrice rigidité, Stiffness matrix, Matriz rigidez, Modélisation, Modeling, Modelización, Multiplicateur Lagrange, Lagrange multiplier, Multiplicador Lagrange, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode élément fini, Finite element method, Método elemento finito, Phénomène transitoire, Transients, Fenómeno transitorio, Réponse transitoire, Transient response, Respuesta transitoria, Transfert chaleur, Heat transfer, Transferencia térmica
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
PETROBRAS R&D Center, Rua Jequitibd 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-598, Brazil
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, United States
Federal University of Rio de Janeiro, P.O. Box 68506, Rio de Janeiro, RJ 21945-970, Brazil
Center for Reliable Engineering Computing (REC), School of Civil & Environmental Engineering, Georgia Institute of Technology, 210 Technology Circle, Savannah, GA 31407-3038, United States
ISSN:
1385-3139
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Physics: solid mechanics
Accession Number:
edscal.18342209
Database:
PASCAL Archive

Further Information

Uncertainty assessment in basin modeling and reservoir characterization is traditionally treated by geostatistical methods which are normally based on stochastic probabilistic approaches. In this paper, we present an alternative approach which is based on interval arithmetic. Here, we discuss a finite element formulation which uses interval numbers rather than real numbers to solve the transient heat conduction in sedimentary basins. For this purpose, a novel formulation was developed to deal with both the special interval arithmetic properties and the transient term in the differential Equation governing heat transfer. In this formulation, the stiffness matrix resulting from the discretization of the heat conduction equation is assembled with an element-by-element technique in which the elements are globally independent and the continuity is enforced by Lagrange multipliers. This formulation is an alternative to traditional Monte Carlo method, where it is necessary to run a simulation several times to estimate the uncertainty in the results. We have applied the newly developed techniques to a one-dimensional thermal basin simulation to assess their potential and limitations. We also compared the quality of our formulation with other solution methods for interval linear systems of equations.