Result: Robust agglomerative clustering algorithm for fuzzy modeling purposes
Groupe Diagnostic, Supervision et Conduite qualitatifs - DISCO Laboratoire d'Analyse et d'Architecture des Systèmes LAAS-CNRS 7 Av. du Colonel Roche, 31077 Toulouse, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
This paper addresses Takagi-Sugeno-Kang (TSK) fuzzy model identification. An enhanced algorithm that uses clustering techniques for the approximation of nonlinear systems from data is presented. The algorithm combines the parallel axis version of the Gustafson-Kessel (GK) algorithm with the Fuzzy C-Regression Models (FCRM) in order to maintain the interpretability and improve the global accuracy of the model. A low sensibility to noise and automatic detection of the number of clusters is achieved by using robust statistic and competitive agglomeration techniques similar to the techniques developed in the Robust Competitive Agglomeration (RCA) algorithm. Finally, two numeric examples concerning to static and dynamic nonlinear systems are shown to demonstrate the effectiveness of the proposed algorithm.