Result: A power-efficient high-throughput 32-thread SPARC processor
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
This first generation of Niagara SPARC processors implements a power-efficient Chip Multi-Threading (CMT) architecture which maximizes overall throughput performance for commercial workloads. The target performance is achieved by exploiting high bandwidth rather than high frequency, thereby reducing hardware complexity and power. The UltraSPARC T1 processor combines eight four-threaded 64-b cores, a floating-point unit, a high-bandwidth interconnect crossbar, a shared 3-MB L2 Cache, four DDR2 DRAM interfaces, and a system interface unit. Power and thermal monitoring techniques further enhance CMT performance benefits, increasing overall chip reliability. The 378-mm2die is fabricated in Texas Instrument's 90-nm CMOS technology with nine layers of copper interconnect. The chip contains 279 million transistors and consumes a maximum of 63 W at 1.2 GHz and 1.2 V. Key functional units employ special circuit techniques to provide the high bandwidth required by a CMT architecture while optimizing power and silicon area. These include a highly integrated integer register file, a high-bandwidth interconnect crossbar, the shared L2 cache, and the 10 subsystem. Key aspects of the physical design methodology are also discussed.