Result: A power-efficient high-throughput 32-thread SPARC processor

Title:
A power-efficient high-throughput 32-thread SPARC processor
Source:
Special issue on the 2006 IEEE International Solid-State Circuits Conference (ISSCC), Multimedia for a mobile world, February 2006IEEE journal of solid-state circuits. 42(1):7-16
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Transistors, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Circuits intégrés par fonction (dont mémoires et processeurs), Integrated circuits by function (including memories and processors), Antémémoire, Cache memory, Antememoria, Circuit intégré, Integrated circuit, Circuito integrado, Complexité circuit, Circuit complexity, Electrodiffusion, Electrodifusión, Evaluation performance, Performance evaluation, Evaluación prestación, Fiabilité, Reliability, Fiabilidad, Fil, Thread, Hilo, Grille transistor, Transistor gate, Rejilla transistor, Haute fréquence, High frequency, Alta frecuencia, Horloge, Clock, Reloj, Instrumentation, Instruments, Instrumentación, Interconnexion, Interconnection, Interconexión, Module multipuce, Multichip module, Modulo multipulga, Mémoire accès direct dynamique, Dynamic random access memory, Mémoire accès direct, Random access memory, Memoria acceso directo, Oxyde grille, Gate oxide, Oxido rejilla, Porteur chaud, Hot carrier, Portador caliente, Processeur, Processor, Procesador, Réseau interconnexion, Interconnection network, Red interconexión, Sous système, Subsystem, Subsistema, Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Transistor, Virgule flottante, Floating point, Coma flotante, Channel hot carrier (CHC), Chip Multi- Threading (CMT), DDR2, L2 cache, Negative Bias Temperature Instability (NBTI), Niagara processor, UltraSPARC T1, clock distribution, electromigration (EM), gate-oxide integrity (GOI), integer register file (IRF), interconnect crossbar, low power, multi-core, power management, reliability, static circuits, thermal management, throughput computing
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Sun Microsystems Inc, Sunnyvale, CA 94085, United States
ISSN:
0018-9200
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.18401868
Database:
PASCAL Archive

Further Information

This first generation of Niagara SPARC processors implements a power-efficient Chip Multi-Threading (CMT) architecture which maximizes overall throughput performance for commercial workloads. The target performance is achieved by exploiting high bandwidth rather than high frequency, thereby reducing hardware complexity and power. The UltraSPARC T1 processor combines eight four-threaded 64-b cores, a floating-point unit, a high-bandwidth interconnect crossbar, a shared 3-MB L2 Cache, four DDR2 DRAM interfaces, and a system interface unit. Power and thermal monitoring techniques further enhance CMT performance benefits, increasing overall chip reliability. The 378-mm2die is fabricated in Texas Instrument's 90-nm CMOS technology with nine layers of copper interconnect. The chip contains 279 million transistors and consumes a maximum of 63 W at 1.2 GHz and 1.2 V. Key functional units employ special circuit techniques to provide the high bandwidth required by a CMT architecture while optimizing power and silicon area. These include a highly integrated integer register file, a high-bandwidth interconnect crossbar, the shared L2 cache, and the 10 subsystem. Key aspects of the physical design methodology are also discussed.