Treffer: Stabilized solution of the multidimensional advection-diffusion -absorption equation using linear finite elements

Title:
Stabilized solution of the multidimensional advection-diffusion -absorption equation using linear finite elements
Source:
Challenges and advances in flow simulation and modelingComputers & fluids. 36(1):92-112
Publisher Information:
Oxford: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 37 ref
Original Material:
INIST-CNRS
Time:
4711
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio Cl, Gran Capitdn s/n, 08034 Barcelona, Spain
ISSN:
0045-7930
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.18410377
Database:
PASCAL Archive

Weitere Informationen

A stabilized finite element method (FEM) for the multidimensional steady state advection-diffusion-absorption equation is presented. The stabilized formulation is based on the modified governing differential equations derived via the finite calculus (FIC) method. For 1D problems the stabilization terms act as a nonlinear additional diffusion governed by a single stabilization parameter. It is shown that for multidimensional problems an orthotropic stabilizing diffusion must be added along the principal directions of curvature of the solution. A simple iterative algorithm yielding a stable and accurate solution for all the range of physical parameters and boundary conditions is described. Numerical results for 1D and 2D problems with sharp gradients are presented showing the effectiveness and accuracy of the new stabilized formulation.