Treffer: Empirical convergence speed of inclusion functions for facility location problems

Title:
Empirical convergence speed of inclusion functions for facility location problems
Source:
Scientific Computing, Computer arithmetic, and Validated Numerics (SCAN 2004)Journal of computational and applied mathematics. 199(2):384-389
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse de l'erreur, Error analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Programmation mathématique, Mathematical programming, Equipement collectif, Facility, Equipamiento colectivo, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Performance algorithme, Algorithm performance, Resultado algoritmo, Problème localisation, Location problem, Problema localización, Programmation mathématique, Mathematical programming, Programación matemática, Vitesse convergence, Convergence speed, Velocidad convergencia, Fonction inclusion, Inclusion function, Optimisation globale, 65G30, 65G40, 65K05, 90B85, 90C30, Facility location
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Statistics and Operations Research, University of Murcia, Murcia, Spain
University of Szeged, Institute of Informatics, Szeged, Hungary
ISSN:
0377-0427
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.18411502
Database:
PASCAL Archive

Weitere Informationen

One of the key points in interval global optimization is the selection of a suitable inclusion function which allows to solve the problem efficiently. Usually, the tighter the inclusions provided by the inclusion function, the better, because this will make the accelerating devices used in the algorithm more effective at discarding boxes. On the other hand, whereas more sophisticated inclusion functions may give tighter inclusions, they require more computational effort than others providing larger overestimations. In an earlier paper, the empirical convergence speed of inclusion functions was defined and studied, and it was shown to be a good indicator of the inclusion precision. If the empirical convergence speed is analyzed for a given type of functions, then one can select the appropriate inclusion function to be used when dealing with those type of functions. In this paper we present such a study, dealing with functions used in competitive facility location problems.