Treffer: Practical solutions for multi-objective optimization : An application to system reliability design problems

Title:
Practical solutions for multi-objective optimization : An application to system reliability design problems
Source:
Selected papers presented at the Fourth International Conference on Quality and ReliabilityReliability engineering & systems safety. 92(3):314-322
Publisher Information:
Oxford: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Energy, Énergie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie de la fiabilité. Renouvellement des équipements, Reliability theory. Replacement problems, Théorie de la décision. Théorie de l'utilité, Decision theory. Utility theory, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Algorithme génétique, Genetic algorithm, Algoritmo genético, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Classification hiérarchique, Hierarchical classification, Clasificación jerarquizada, Extraction information, Information extraction, Extracción información, Fiabilité système, System reliability, Fiabilidad sistema, Filtrage, Filtering, Filtrado, Fonction objectif, Objective function, Función objetivo, Fouille donnée, Data mining, Busca dato, Optimisation, Optimization, Optimización, Optimum Pareto, Pareto optimum, Optimo Pareto, Priorité, Priority, Prioridad, Prise décision, Decision making, Toma decision, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Redondance, Redundancy, Redundancia, Traitement donnée, Data processing, Tratamiento datos, Clustering analysis, Multi-objective optimization, Pareto optimal set
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, United States
King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
ISSN:
0951-8320
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.18411679
Database:
PASCAL Archive

Weitere Informationen

For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set.