Result: Eliminating graphs by means of parallel knock-out schemes

Title:
Eliminating graphs by means of parallel knock-out schemes
Source:
29th symposium on mathematical foundations of computer science MFCS 2004Discrete applied mathematics. 155(2):92-102
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 9 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Recherche information. Graphe, Information retrieval. Graph, Algorithmique, Algorithmics, Algorítmica, Arbre graphe, Tree(graph), Arbol grafo, Complexité calcul, Computational complexity, Complejidad computación, Couplage parfait, Perfect matching, Apareamiento perfecto, Cycle hamiltonien, Hamiltonian cycle, Ciclo hamiltoniano, Graphe biparti, Bipartite graph, Grafo bipartido, Graphe planaire, Planar graph, Grafo planario, Informatique théorique, Computer theory, Informática teórica, Matrice creuse, Sparse matrix, Matriz dispersa, Problème NP difficile, NP hard problem, Problema NP duro, Processus itératif, Iterative process, Proceso iterativo, Programmation dynamique, Dynamic programming, Programación dinámica, Racine carrée, Square root, Raíz cuadrada, Temps polynomial, Polynomial time, Tiempo polinomial, Graphe processus, Graphe sans griffe, Claw free graph, Largeur arbre, Tree width, Nombre knock-out, Knock-out number, Schéma parallel, Parallel scheme, 05C75; 05C35; 05C85; 68R10, Knock-out number; Parallel knock-out scheme; Hamiltonian cycle; Perfect matching; Tree; Claw-free graph; Computational complexity; Dynamic programming
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, University of Durham, Science Labs. South Road, DH1 3LE Durham, United Kingdom
Center for Combinatorics, Nankai University, Tianjin 300071, China
Department of Informatics. University of Bergen, 5020 Bergen, Norway
Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
ISSN:
0166-218X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18454946
Database:
PASCAL Archive

Further Information

In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which all vertices have been eliminated (if possible). The parallel knock-out number is related to well-known concepts like perfect matchings, hamiltonian cycles, and 2-factors. We derive a number of combinatorial and algorithmic results on parallel knock-out numbers: for families of sparse graphs (like planar graphs or graphs of bounded tree-width), the parallel knock-out number grows at most logarithmically with the number n of vertices; this bound is basically tight for trees. Furthermore, there is a family of bipartite graphs for which the parallel knock-out number grows proportionally to the square root of n. We characterize trees with parallel knock-out number at most 2, and we show that the parallel knock-out number for trees can be computed in polynomial time via a dynamic programming approach (whereas in general graphs this problem is known to he NP-hard). Finally, we prove that the parallel knock-out number of a claw-free graph is either infinite or less than or equal to 2.