Result: Eliminating graphs by means of parallel knock-out schemes
Center for Combinatorics, Nankai University, Tianjin 300071, China
Department of Informatics. University of Bergen, 5020 Bergen, Norway
Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which all vertices have been eliminated (if possible). The parallel knock-out number is related to well-known concepts like perfect matchings, hamiltonian cycles, and 2-factors. We derive a number of combinatorial and algorithmic results on parallel knock-out numbers: for families of sparse graphs (like planar graphs or graphs of bounded tree-width), the parallel knock-out number grows at most logarithmically with the number n of vertices; this bound is basically tight for trees. Furthermore, there is a family of bipartite graphs for which the parallel knock-out number grows proportionally to the square root of n. We characterize trees with parallel knock-out number at most 2, and we show that the parallel knock-out number for trees can be computed in polynomial time via a dynamic programming approach (whereas in general graphs this problem is known to he NP-hard). Finally, we prove that the parallel knock-out number of a claw-free graph is either infinite or less than or equal to 2.