Result: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games

Title:
A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games
Source:
29th symposium on mathematical foundations of computer science MFCS 2004Discrete applied mathematics. 155(2):210-229
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 38 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie des jeux, Game theory, Théorie de la décision. Théorie de l'utilité, Decision theory. Utility theory, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Calcul automatique, Computing, Cálculo automático, Classe complexité, Complexity class, Clase complejidad, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Graphe orienté, Directed graph, Grafo orientado, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Parité, Parity, Paridad, Plus court chemin, Shortest path, Camino más corto, Programmation linéaire, Linear programming, Programación lineal, Stratégie joueur, Player strategy, Estrategia jugador, Stratégie optimale, Optimal strategy, Estrategia optima, Amélioration itérative, Iterative improvement, Classe NP, Digraphe, Jeu cyclique, Cyclic game, Jeu profit moyen, Mean payoff game, Longueur chemin, Partition ergodique, Ergodic partition, Problème décision, Randomized algorithm, Combinatorial linear programming, Longest shortest parth, Parity game, Randomized subexponential algorithm
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Information Technology Department, Uppsala University, Box 337, 751 05 Uppsala, Sweden
ISSN:
0166-218X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.18454955
Database:
PASCAL Archive

Further Information

We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph. We identify a new controlled version of the shortest paths problem. By selecting exactly one outgoing edge in each of the controlled vertices we want to make the shortest distances from all vertices to the unique sink as long as possible. The decision version of the problem (whether the shortest distance from a given vertex can be made bigger than a given bound?) belongs to the complexity class NP n coNP. Mean payoff games are easily reducible to this problem. We suggest an algorithm for computing longest shortest paths. Player MAX selects a strategy (one edge from each controlled vertex) and player MIN responds by evaluating shortest paths to the sink in the remaining graph. Then MAX locally changes choices in controlled vertices looking at attractive switches that seem to increase shortest paths lengths (under the current evaluation). We show that this is a monotonic strategy improvement, and every locally optimal strategy is globally optimal. This allows us to construct a randomized algorithm of complexity min(poly. W, 2O(√n log n)), which is simultaneously pseudopolynomial (W is the maximal absolute edge weight) and subexponential in the number of vertices n. All previous algorithms for mean payoff games were either exponential or pseudopolynomial (which is purely exponential for exponentially large edge weights).