Treffer: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning

Title:
Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
Source:
Genetic fuzzy systems and the interpretability-accuracy trade-offInternational journal of approximate reasoning. 44(1):4-31
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse donnée, Data analysis, Análisis datos, Base connaissance, Knowledge base, Base conocimiento, Chaîne caractère, Character string, Cadena carácter, Classification, Clasificación, Ensemble flou, Fuzzy set, Conjunto difuso, Extraction information, Information extraction, Extracción información, Fouille donnée, Data mining, Busca dato, Génétique, Genetics, Genética, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Logique floue, Fuzzy logic, Lógica difusa, Optimisation, Optimization, Optimización, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Système expert, Expert system, Sistema experto, Fuzzy data mining, Fuzzy systems, Genetic algorithms, Genetics-based machine learning, Multiobjective optimization
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
ISSN:
0888-613X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18470711
Database:
PASCAL Archive

Weitere Informationen

This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier, which is a set of fuzzy rules, is represented as a concatenated integer string of variable length. Our GBML algorithm simultaneously maximizes the accuracy of rule sets and minimizes their complexity. The accuracy is measured by the number of correctly classified training patterns while the complexity is measured by the number of fuzzy rules and/or the total number of antecedent conditions of fuzzy rules. We examine the interpretability-accuracy tradeoff for training patterns through computational experiments on some benchmark data sets. A clear tradeoff structure is visualized for each data set. We also examine the interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a clear tradeoff structure is not always obtained in computational experiments for test patterns.