Result: A new global optimization algorithm for signomial geometric programming via Lagrangian relaxation

Title:
A new global optimization algorithm for signomial geometric programming via Lagrangian relaxation
Source:
Applied mathematics and computation. 184(2):886-894
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Algorithme, Algorithm, Algoritmo, Analyse numérique, Numerical analysis, Análisis numérico, Borne inférieure, Lower bound, Cota inferior, Changement variable, Variable transformation, Cambio variable, Convergence, Convergencia, Fonction lagrangienne, Lagrangian function, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Multiplicateur Lagrange, Lagrange multiplier, Multiplicador Lagrange, Méthode Newton, Newton method, Método Newton, Méthode optimisation, Optimization method, Método optimización, Programmation géométrique, Geometric programming, Programación geométrica, Programmation mathématique, Mathematical programming, Programación matemática, Relaxation, Relajación, Solution globale, Global solution, Solución global, Transformation géométrique, Geometric transformation, Transformación geométrica, Algorithme global, Dualité lagrangienne, Lagrangian duality, Méthode branch and bound, Optimisation globale, Branch-and-bound algorithm, Signomial geometric programming
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Science, Xi'an Jiaotong Unirersity, Xi'an 710049, China
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.18519368
Database:
PASCAL Archive

Further Information

In this paper, a global optimization algorithm, which relies on the exponential variable transformation of the signomial geometric programming (SGP) and the Lagrangian duality of the transformed programming, is proposed for solving the signomial geometric programming (SGP). The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian function for a given estimate of the Lagrangian multipliers is often nonconvex. Minimizing a linear underestimation of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. In the new algorithm the lower bounds are obtained by minimizing the linear relaxation of restricted Lagrangian function for a given estimate of the Lagrange multipliers. A branch-and-bound algorithm is presented that relies on these Lagrangian relaxations to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm is efficient.