Treffer: Theory of semidefinite programming for Sensor Network Localization
Department of Management Science and Engineering and, by courtesy, Electrical Engineering. Stanford University, Stanford. CA 94305, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior-point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we show, for the first time, that these networks can be localized in polynomial time. We also give a simple and efficient criterion for checking whether a given instance of the localization problem has a unique realization in R2using graph rigidity theory. Finally, we introduce a notion called strong localizability and show that the SDP model will identify all strongly localizable sub-networks in the input network.