Result: A radar-based verification of precipitation forecast for local convective storms

Title:
A radar-based verification of precipitation forecast for local convective storms
Source:
European conference on severe storms (ECSS 2004)Atmospheric research. 83(2-4):211-224
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Climatology, meteorology, Climatologie, météorologie, Sciences exactes et technologie, Exact sciences and technology, Terre, ocean, espace, Earth, ocean, space, Geophysique externe, External geophysics, Météorologie, Meteorology, Eau dans l'atmosphère (humidité, nuages, évaporation, précipitation), Water in the atmosphere (humidity, clouds, evaporation, precipitation), Tempêtes, ouragans, tornades, orages, Storms, hurricanes, tornadoes, thunderstorms, Analyse et prévision du temps, Weather analysis and prediction, Europe, Europa, Donnée observation, Observation data, Dato observación, Echelon local, Local scope, Escala local, Erreur quadratique moyenne, Mean square error, Error medio cuadrático, Eté, Summer, Verano, Incertitude, Uncertainty, Incertidumbre, Modèle prévision, Forecast model, Modelo previsión, Observation radar, Radar observation, Observación radar, Performance algorithme, algorithm performance, Pertinence prévision, Forecast skill, Pertinencia previsión, Précipitation atmosphérique, atmospheric precipitation, Precipitación atmosférica, Prévision météorologique, Weather forecast, Previsión meteorológica, Prévision numérique, Numerical forecast, Previsión numérica, Système convectif mésoéchelle, Mesoscale convective system, Sistema convectiva mesoescala, Taux précipitation, Rainfall rate, Indice pluviosidad, Tempête, storms, Tempestad, Crue éclair, Flash flood, Crecida repentina, Temps violent, Severe weather, Tiempo violento, Flash flood precipitation, Local convective storm, Precipitation forecast, Radar-based forecast verification, Radar-based precipitation estimation
Time:
2002
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute of Atmospheric Physics, Acad. Sci. Czech Republic, Bocni Str. II/1401, 141 31 Prague, Czech Republic
ISSN:
0169-8095
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
External geophysics
Accession Number:
edscal.18544575
Database:
PASCAL Archive

Further Information

Local flash flood storms with a rapid hydrological response are a real challenge for quantitative precipitation forecasting (QPF). It is relevant to assess space domains, to which the QPF approaches are applicable. In this paper an attempt is made to evaluate the forecasting capability of a high-resolution numerical weather prediction (NWP) model by means of area-related QPF verification. The results presented concern two local convective events, which occurred in the Czech Republic (CR) on 13 and 15 July 2002 and caused local flash floods. We used the LM COSMO model (Lokall Model of the COSMO consortium) adapted to the horizontal resolution of 2.8 km over a model domain covering the CR. The 18 h forecast of convective precipitation was verified by using radar rainfall totals adjusted to the measured rain gauge data. The grid point-related root mean square error (RMSE) value was calculated over a square around the grid point under the assumption that rainfall values were randomly distributed within the square. The forecast accuracy was characterized by the mean RMSE over the whole verification domain. We attempt to show a dependence of both the RMSE field and the mean RMSE on the square size. The importance of a suitable merger between the radar and rain gauge datasets is demonstrated by a comparison between the verification results obtained with and without the gauge adjustment. The application of verification procedure demonstrates uncertainties in the precipitation forecasts. The model was integrated with initial conditions shifted by 0.5° distances. The four verifications, corresponding to the shifts in the four directions, show differences in the resulting QPF, which depend on the size of verification area and on the direction of the shift.