Result: A Bolza problem in hydrothermal optimization
Title:
A Bolza problem in hydrothermal optimization
Authors:
Source:
International Conference on Computational Methods in Sciences and Engineering 2004 (ICCMSE-2004)Applied mathematics and computation. 184(1):12-22
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Contrôle optimal, Optimal control (mathematics), Control óptimo (matemáticas), Convergence, Convergencia, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode Gauss, Gauss method, Método Gauss, Optimisation, Optimization, Optimización, Principe Pontryagin, Pontryagin principle, Principio Pontryagin, Principe minimum, Minimum principle, Principio mínimo, Problème Bolza, Bolza problem, Problema Bolza, Programmation mathématique, Mathematical programming, Programación matemática, Système grande taille, Large scale system, Sistema gran escala, Coordination hydrothermique à court terme, Short-term hydrothermal coordination, Méthode constructive, Méthode non linéaire, Optimal control, Pontryagin's principle
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of Oriedo, Department of Mathematics, E.U.I.T.I. Campus of Viesques, 33204 Cijón, Asturias, Spain
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18551610
Database:
PASCAL Archive
Further Information
This paper studies the optimization of large-scale hydrothermal power systems. For the general problem with n hydro-plants, we present an algorithm using a particular strategy related to the Gauss-Southwell method of nonlinear optimization. The algorithm offers a constructive method for producing sequences of problems with one hydro-plant. For this simple problem we use Pontryagin's minimum principle to prove a condition for the extremals of the functional. We set out our problem in terms of optimal control in continuous time, with the Bolza-type functional. Finally, we present one example employing a program developed with the Mathematica package and analyze the convergence of the algorithm.