Result: Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing

Title:
Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing
Source:
Bifurcations, instabilities and degradation in geomechanicsInternational journal for numerical and analytical methods in geomechanics. 31(3):523-540
Publisher Information:
Chichester: Wiley, 2007.
Publication Year:
2007
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Geographic:
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
CERMES, Institut Navier, Ecole Nationale de Ponts et Chaussées/LCPC, Marne-La-Vallée, France
Faculty of Applied Mathematics and Physics, National Technical University of Athens, Greece
ISSN:
0363-9061
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Building. Public works. Transport. Civil engineering

Earth sciences
Accession Number:
edscal.18568761
Database:
PASCAL Archive

Further Information

In this paper, the mechanism of fault pressurization in rapid slip events is analysed on the basis of a complete characterization of the thermo-poro-mechanical behaviour of a clayey gouge extracted at 760 m depth in Aigion fault in the active seismic zone of the Gulf of Corinth, Greece. It is shown that the thermally collapsible character of this clayey gouge can be responsible for a dramatic reduction of effective stress and a full fluidization of the material. The thickness of the 'ultra-localized' zone of highly strained material is a key parameter that controls the competing phenomena of pore pressure increase leading to fluidization of the fault gouge and temperature increase leading to pore-fluid vapourization.