Treffer: Systematic theoretical investigations of compositional inhomogeneity in InxGa1-xN thin films on GaN(0001)

Title:
Systematic theoretical investigations of compositional inhomogeneity in InxGa1-xN thin films on GaN(0001)
Source:
Thirteenth International Conference on Metal Organic Vapor Phase Epitaxy (ICMOVPE-XIII), Phoenix Seagaia Resort, Miyazaki, 22-26 May 2006Journal of crystal growth. 298:186-189
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Geology, Géologie, Metallurgy, welding, Métallurgie, soudage, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Structure des liquides et des solides; cristallographie, Structure of solids and liquids; crystallography, Défauts et impuretés dans les cristaux; microstructure, Defects and impurities in crystals; microstructure, Défauts linéaires: dislocations, disinclinaisons, Linear defects: dislocations, disclinations, Domaines interdisciplinaires: science des materiaux; rheologie, Cross-disciplinary physics: materials science; rheology, Science des matériaux, Materials science, Matériaux particuliers, Specific materials, Autres semiconducteurs, Other semiconductors, Composition surface, Surface composition, Composé III-V, III-V compound, Compuesto III-V, Composé minéral, Inorganic compounds, Couche mince, Thin films, Dislocation interfaciale, Misfit dislocations, Energie liaison, Binding energy, Gallium nitrure, Gallium nitrides, Indium nitrure, Indium nitrides, Interface, Interfaces, Méthode Monte Carlo, Monte Carlo methods, Nitrure, Nitrides, Potentiel interatomique, Interatomic potential, Potencial interatómico, Semiconducteur III-V, III-V semiconductors, Simulation numérique, Digital simulation, Ségrégation surface, Surface segregation, 6172L, 8105E, GaN, In N, InN, InxGa1-xN, 68.35.Dv; 81.05.Ea; 81.10.Aj, Al. Defects; Al. Interfaces; Al. Surfaces; B1. Nitrides
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics Engineering, Mie University, 1577 Kurima-Machiya, Tsu 514-8507, Japan
ISSN:
0022-0248
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics and materials science

Physics of condensed state: structure, mechanical and thermal properties
Accession Number:
edscal.18578722
Database:
PASCAL Archive

Weitere Informationen

We systematically investigate the compositional inhomogeneity near surface, interface, and dislocation in InxGa1-xN thin films on GaN(0001) by using our empirical interatomic potential and the Monte Carlo (MC) method. The compositional inhomogeneity is discussed by evaluating individual contribution such as strain relief at the surface and the interface between InxGa1-xN and GaN with/ without misfit dislocations. The empirical potential calculations reveal that the dislocation core energy for bulk InN (1.51 eV) is smaller than that of GaN (1.81 eV). This suggests that In atoms preferentially reside in the lattice sites near the dislocation core in InxGa1-xN. The MC simulation clarifies that In surface segregation is found in InxGa1-xN thin films pseudomorphically grown on GaN(0001), where the surface composition of In is greater than that of bulk In composition because of strain relief and bond energy profit of In atoms at the surface. Further MC simulation for the system including both surface and misfit dislocations implies that the In atoms segregate at the surface strongly while In atoms segregate near the misfit dislocations weakly.