Result: The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency
A. F. Ioffe Physico-Technical Institute, Russian Academy of Science, 194021 St. Petersburg, Russian Federation
OptoGaN Oy, Tietotie 3, 02150 Espoo, Finland
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Physics and materials science
Physics of condensed state: structure, mechanical and thermal properties
Further Information
We report on the effect of GaN buffer threading dislocation (TD) optimization and InGaN/GaN quantum well (QW) hydrogen (H2) treatment on the efficiency of GaN light emitting diodes (LEDs) operating in the spectral range from 400 to 500 nm. A tenfold reduction of the TD density in the GaN buffer increased the efficiency of blue LEDs operating at high current density, while in green LEDs it had very little effect. The reduced TD density also increased the compressive strain in the InGaN QWs, and caused blue shift to the electroluminescence (EL) peak wavelength. The H2 treatment of the QWs increased strain inside the MQW stack. It was possible to apply the H2 treatment only to UV LEDs, as the increased strain in blue and green LEDs caused relaxation of the MQW stack. Although this resulted in smooth surface morphology of the MQW stack, it did not lead to any increase in the efficiency of the UV LEDs.