Treffer: Visual data mining using principled projection algorithms and information visualization techniques

Title:
Visual data mining using principled projection algorithms and information visualization techniques
Source:
KDD-2006 (proceedings of the Twelfth ACM SIGKDD international conference on knowledge discovery and data mining, August 20-23, 2006, Philadelphia, PA, USA). :643-648
Publisher Information:
New York: ACM Press, 2006.
Publication Year:
2006
Physical Description:
print, 20 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Analyse donnée, Data analysis, Análisis datos, Base donnée très grande, Very large databases, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Complexité calcul, Computational complexity, Complejidad computación, Courbure, Curvature, Curvatura, Découverte connaissance, Knowledge discovery, Descubrimiento conocimiento, Extraction information, Information extraction, Extracción información, Fouille donnée, Data mining, Busca dato, Grossissement, Magnification, Aumento, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Interface utilisateur, User interface, Interfase usuario, Méthode projection, Projection method, Método proyección, Visualisation donnée, Data visualization
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
NCRG, Aston University, Birmingham B4 7ET, United Kingdom
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18597461
Database:
PASCAL Archive

Weitere Informationen

We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.