Result: Precoding and decoding paradigms for distributed vector data compression

Title:
Precoding and decoding paradigms for distributed vector data compression
Source:
IEEE transactions on signal processing. 55(4):1445-1460
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Codage, codes, Coding, codes, Echantillonnage, quantification, Sampling, quantization, Traitement du signal, Signal processing, Divers, Miscellaneous, Ajustement modèle, Model matching, Ajustamiento modelo, Algorithme, Algorithm, Algoritmo, Allocation ressource, Resource allocation, Asignación recurso, Canal transmission, Transmission channel, Canal transmisión, Codage source, Source coding, Compression donnée, Data compression, Compresión dato, Décodage, Decoding, Desciframiento, Egalisation, Equalization, Igualación, Gestion ressources, Resource management, Gestión recursos, Implémentation, Implementation, Implementación, Milieu dissipatif, Lossy medium, Medio dispersor, Modèle linéaire, Linear model, Modelo lineal, Méthode adaptative, Adaptive method, Método adaptativo, Quantification signal, Signal quantization, Cuantificación señal, Quantification vectorielle, Vector quantization, Cuantificación vectorial, Solution optimale, Optimal solution, Solución óptima, Système télécommunication, Telecommunication system, Sistema telecomunicación, Taux erreur, Error rate, Indice error, Traitement signal, Signal processing, Procesamiento señal, Transformation Karhunen Loeve, Karhunen Loeve transformation, Transformación Karhunen Loeve, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, Vecteur aléatoire, Random vector, Vector aléatorio, Problème Wyner Ziv, Wyner Ziv problem, Signal source réparti, Distributed source signal, Señal fuente distribuida, Binnig, Conditional Karhunen-Loève transform (CKLT), Gaussian sources, Wyner-Ziv encoders, correlated vector sources, coset construction, distributed source coding, equalization, lossy coding, precoding, quantization, rate allocation, source coding with side information, transform coding
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical and Computer En gineering, University of Rochester, Rochester, NY 14627, United States
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, United States
ISSN:
1053-587X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.18611036
Database:
PASCAL Archive

Further Information

In this paper, we consider the problem of lossy coding of correlated vector sources with uncoded side information available at the decoder. In particular, we consider lossy coding of vector source x ∈ RN which is correlated with vector source y ∈ RN, known at the decoder. We propose two compression schemes, namely, distributed adaptive compression (DAC) and distributed universal compression (DUC) schemes. The DAC algorithm is inspired by the optimal solution for Gaussian sources and requires computation of the conditional Karhunen-Loève transform (CKLT) of the data at the encoder. The DUC algorithm, however, does not require knowledge of the CKLT at the encoder. The DUC algorithms are based on the approximation of the correlation model between the sources y and x through a linear model y = Hx + n in which H is a matrix and n is a random vector and independent of x. This model can be viewed as a fictitious communication channel with input x and output y. Utilizing channel equalization at the receiver, we convert the original vector source coding problem into a set of manageable scalar source coding problems. Furthermore, inspired by bit loading strategies employed in wireless communication systems, we propose for both compression schemes a rate allocation policy which minimizes the decoding error rate under a total rate constraint. Equalization and bit loading are paired with a quantization scheme for each vector source entry (a slightly simplified version of the so called DISCUS scheme). The merits of our work are as follows: 1) it provides a simple, yet optimized, implementation of Wyner-Ziv quantizers for correlated vector sources, by using the insight gained in the design of communication systems; 2) it provides encoding schemes that, with or without the knowledge of the correlation model at the encoder, enjoy distributed compression gains.