Treffer: Cycles and communicating classes in membrane systems and molecular dynamics

Title:
Cycles and communicating classes in membrane systems and molecular dynamics
Source:
Membrane ComputingTheoretical computer science. 372(2-3):242-266
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Generalites, General aspects, Mathématiques biologiques. Statistiques. Modèles. Métrologie. Informatique en biologie (généralités), Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects), Algorithme, Algorithm, Algoritmo, Arbre recherche, Search tree, Arbol investigación, Chaîne Markov, Markov chain, Cadena Markov, Classe équivalence, Equivalence classes, Dynamique moléculaire, Molecular dynamics, Dinámica molecular, Graphe orienté, Directed graph, Grafo orientado, Informatique théorique, Computer theory, Informática teórica, Méthode séquentielle, Sequential method, Método secuencial, Système biologique, Biological system, Sistema biológico, Test statistique, Statistical test, Test estadístico, Classe communication, Communicating class, Contrainte ensemble, Cycles dans digraphe, Cycles in digraph, Digraphe, Recherche arborescence, Système addition vecteur, Vector addition system, Système membrane, Membrane system, Système transition, Transition systems, Communicating classes, Cycles in digraphs, Membrane systems, Vector addition systems
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Leiden University, Mathematical Institute, Niels Bohrweg, 2333 CA Leiden, Netherlands
Universita degli Studi di Milano, Dipartimento di Informatica e Comunicazione, Via Comelico 39, 20135 Milano, Italy
Leiden University, Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
Vrije Universiteit Amsterdam, Faculteit der Bewegingswetenschappen, Van der Boechorststraat 9, 1081 BT Amsterdam, Netherlands
ISSN:
0304-3975
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Biological sciences. Generalities. Modelling. Methods

Computer science; theoretical automation; systems

Generalities in biological sciences

Mathematics
Accession Number:
edscal.18619489
Database:
PASCAL Archive

Weitere Informationen

We are considering sequential membrane systems and molecular dynamics from the viewpoint of Markov chain theory. The configuration space of these systems (including the transitions) is a special kind of directed graph, called a pseudo-lattice digraph, which is closely related to the stoichiometric matrix. Taking advantage of the monoidal structure of this space, we introduce the algebraic notion of precycle. A precycle leads to the identification of cycles by means of the concept of defect, which is a set of geometric constraints on configuration space. Two efficient algorithms for evaluating precycles and defects are given: one is an algorithm due to Contejean and Devie, the other is a novel branch-and-bound tree search procedure. Cycles partition configuration space into equivalence classes, called the communicating classes. The structure of the communicating classes in the free regime -where all rules are enabled - is analyzed: testing for communication can be done efficiently. We show how to apply these ideas to a biological regulatory system.