Treffer: A GA-based query optimization method for web information retrieval

Title:
A GA-based query optimization method for web information retrieval
Source:
Special issue on intelligent computing theory and methodologyApplied mathematics and computation. 185(2):919-930
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Algorithme génétique, Genetic algorithm, Algoritmo genético, Analyse numérique, Numerical analysis, Análisis numérico, Benchmark, Benchmarks, Boucle réaction, Feedback, Retroalimentación, Conception, Design, Diseño, Génétique, Genetics, Genética, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Optimisation, Optimization, Optimización, Plan expérience, Experimental design, Plan experiencia, Programmation mathématique, Mathematical programming, Programación matemática, Recherche information, Information retrieval, Búsqueda información, Requête, Query, Pregunta documental, 05Bxx, 49XX, 65Kxx, Fitness function, Genetic algorithm: Relevance feedback: Information retrieval, Query optimization
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computer College of Chongqing Unirersity, Chongqing 400044, China
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18637800
Database:
PASCAL Archive

Weitere Informationen

By a different use of relevance feedback (the order in which the relevant documents are retrieved, the terms of the relevant documents, and the terms of the irrelevant documents) in the design of fitness function, and by introducing three different genetic operators, we have developed a new genetic algorithm-based query optimization method on relevance feedback for Web information retrieval. Based on three benchmark test collections Cranfield, Medline and CACM, experiments have been carried out to compare our method with three well-known query optimization methods on relevance feedback: the traditional Ide Dec-hi method, the Horng and Yeh's GA-based method and the López-Pujalte et al.'s GA-based method. The experiments show that our method can achieve better results.