Treffer: A GA-based query optimization method for web information retrieval
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
By a different use of relevance feedback (the order in which the relevant documents are retrieved, the terms of the relevant documents, and the terms of the irrelevant documents) in the design of fitness function, and by introducing three different genetic operators, we have developed a new genetic algorithm-based query optimization method on relevance feedback for Web information retrieval. Based on three benchmark test collections Cranfield, Medline and CACM, experiments have been carried out to compare our method with three well-known query optimization methods on relevance feedback: the traditional Ide Dec-hi method, the Horng and Yeh's GA-based method and the López-Pujalte et al.'s GA-based method. The experiments show that our method can achieve better results.