Result: Improved mean shift segmentation approach for natural images

Title:
Improved mean shift segmentation approach for natural images
Source:
Special issue on intelligent computing theory and methodologyApplied mathematics and computation. 185(2):940-952
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Addition, Adicción, Analyse numérique, Numerical analysis, Análisis numérico, Couleur, Color, Critère optimalité, Optimality criterion, Criterio optimalidad, Densité, Density, Densidad, Décalage, Shift, Decalaje, Détection, Detection, Detección, Elimination, Eliminación, Estimation densité, Density estimation, Estimación densidad, Estimation moyenne, Mean estimation, Estimación promedio, Image, Imagen, Largeur bande, Bandwidth, Anchura banda, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Partition, Partición, Performance, Rendimiento, Programmation mathématique, Mathematical programming, Programación matemática, Segmentation image, Image segmentation, Segmentation, Segmentación, Texture, Textura, Vision, Visión, 05C78, 49XX, 65Kxx, Optimisation globale, Mode detection, Natural image segmentation: Mean shift
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Laboratory of Complex Systems and Intelligence Science. Institute of Automation, Chinese Academy of Sciences, 100080 Beijing, China
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18637802
Database:
PASCAL Archive

Further Information

This paper proposes an improved natural image segmentation approach that is more effective, more controllable and more stable under various backgrounds than the traditional mean shift segmentation. The proposed approach employs following four new aspects: the changeable color bandwidth, the direct density searching, the global optimization for mode merging, and the elimination of texture patches. In bandwidth selection, the optimal color bandwidth under Plug-in rule used by the traditional approach is not suitable for actual vision tasks, and a changeable color bandwidth makes it easy to control the segmentation result. The performance of the direct density searching is better than that of mean shift under the same spatial bandwidth, A global optimization criterion for mode merging stabilizes the segmentation result of different images. The elimination of texture patches mostly removes the small patches resulting from texture. In addition, after mode detection, an image is partitioned into some local patches, each of which corresponds to a local mode. These patches are got with color information, and they can be taken as the initial segmentation for further processing that is based on a global optimization criterion constructed by texture features.