Treffer: BP neural network prediction-based variable-period sampling approach for networked control systems

Title:
BP neural network prediction-based variable-period sampling approach for networked control systems
Source:
Special issue on intelligent computing theory and methodologyApplied mathematics and computation. 185(2):976-988
Publisher Information:
New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Analyse mathématique, Mathematical analysis, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algorithme, Algorithm, Algoritmo, Analyse numérique, Numerical analysis, Análisis numérico, Approche système, System approach, Enfoque sistémico, Approximation, Aproximación, Conception, Design, Diseño, Courant, Current, Corriente, Echantillonnage, Sampling, Muestreo, Effondrement, Collapse, Desmoronamiento, Environnement, Environment, Medio ambiente, Estimation erreur, Error estimation, Estimación error, Face, Cara, Gradin, Step, Peldaño, Influence, Influencia, Instabilité, Instability, Inestabilidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modélisation, Modeling, Modelización, Performance système, System performance, Eficacia sistema, Plan expérience, Experimental design, Plan experiencia, Précision, Accuracy, Precisión, Prédiction, Prediction, Predicción, Période, Period, Período, Réseau neuronal non bouclé, Feedforward neural nets, Réseau neuronal, Neural network, Red neuronal, Schéma, Scheme, Esquema, Simulation, Simulación, Système commande, Control system, Sistema control, Système paramètre variable, Time varying system, Sistema parámetro variable, Système à retard, Delay system, Sistema con retardo, Temps retard, Delay time, Tiempo retardo, 05Bxx, 58A25, Erreur prédiction, Training algorithm, BP algorithm, Control, Networked control system
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
Techfaith Wireless Communication Technology (Beijing) Co., Ltd, Beijing 100016, China
Department of Electrical. Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
ISSN:
0096-3003
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18637805
Database:
PASCAL Archive

Weitere Informationen

The biggest problem that networked control systems face is the random time-varying delay, which often causes system instability and even collapse. Aiming at this problem, a new modeling scheme for the networked control systems, motivated from a variable-period sampling approach, is presented in this paper. Here, the time delay to occur at current sampling step is taken as the sampling period between current sampling step and next sampling step. To predict online the time delay induced in the networked control systems, a BP feedforward neural network is adopted and the training algorithm of the BP neural network is given. To make the BP neural network adapt to the changing environment of the networked control systems and improve its prediction accuracy, the BP neural network is designed to further update according to its prediction error after each prediction. At each sampling step, good approximation to actual time delay becomes available and different sampling period is obtained. Control simulations using the variable sampling period and fixed sampling period are compared. Simulation results show that this new approach can alleviate the influence of time delay to the greatest extent and improve the performance of the networked control systems.