Result: MCPSO : A multi-swarm cooperative particle swarm optimizer
Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3GJ, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
This paper presents a new optimization algorithm - MCPSO, multi-swarm cooperative particle swarm optimizer. inspired by the phenomenon of symbiosis in natural ecosystems. MCPSO is based on a master-slave model, in which a population consists of one master swarm and several slave swarms. The slave swarms execute a single PSO or its variants independently to maintain the diversity of particles, while the master swarm evolves based on its own knowledge and also the knowledge of the slave swarms. According to the co-evolutionary relationship between master swarm and slave swarms, two versions of MCPSO are proposed, namely the competitive version of MCPSO (COM-MCPSO) and the collaborative version of MCPSO (COL-MCPSO), where the master swarm enhances its particles based on an antagonistic scenario or a synergistic scenario, respectively. In the simulation studies, several benchmark functions are performed, and the performances of the proposed algorithms are compared with the standard PSO (SPSO) and its variants to demonstrate the superiority of MCPSO.