Treffer: Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles

Title:
Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles
Source:
Selected papers from the Tenth Meeting of the European Society of Sonochemistry (ESS10), Hamburg, Germany, 4-8 June 2006Ultrasonics sonochemistry. 14(4):456-469
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical and Industrial Engineering, University of Thessaly, Volos 38334, Greece
ISSN:
1350-4177
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
General chemistry and physical chemistry
Accession Number:
edscal.18653460
Database:
PASCAL Archive

Weitere Informationen

The details of nonlinear axisymmetric oscillations and collapse of bubbles subject to large internal or external pressure disturbances, are studied via a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. Simulations of single-cavitation bubble luminescence (SCBL) and single-bubble sonoluminescence (SBSL) are performed under conditions similar to reported experimental observations, aiming at capturing the details of bubble collapse. It is shown that any small initial deviation from sphericity, modeled through a small initial elongation along the axis of symmetry, may result in the formation and impact of two counter-propagating jets during collapse of the bubble, provided the amplitude of the initial disturbance is large enough and the viscosity of the surrounding fluid is small enough. Comparison between simulations and experimental observations show that this is the case for bubbles induced via a nano-second laser pulse (SCBL) during a luminescence event. In a similar fashion, simulations show that loss of sphericity accompanied with jet formation and impact during collapse is also possible with acoustically trapped bubbles in a standing pressure wave (SBSL), due to the many afterbounces of the bubble during its collapse phase. In both cases jet impact occurs as a result of P2 growth in the form of an afterbounce instability. When the sound amplitude is decreased or liquid viscosity is increased the intensity of the afterbounce is decreased and jet impact is suppressed. When the sound amplitude is increased jet formation is superceded by Rayleigh-Taylor instability. In the same context stable luminescence is quenched in experimental observations. In both SCBL and SBSL simulations the severity of jet impact during collapse is quite large, and its local nature quite distinct. This attests to the fact that it is an energy focusing mechanism whose importance in generating the conditions under which a luminescence event is observed should be further investigated.